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Abstract—Social interactions can be both positive and negative,
and at various spatial and temporal scales. Negative interactions
such as conflicts are often influenced by political, economic and
social pre-conditions. The signatures of conflicts can be mapped
and studied in the form of complex social networks. Using
publicly available large digital databases of media records, we
construct networks of actors involved in conflicts by aggregating
the events over time. We then study the spatio-temporal dynamics
and network topology of conflicts, which can provide important
insights on the engaging individuals, groups, establishments and
sometimes nations, pointing at their long range effect over space
and time. Network analyses of the empirical data reveal certain
statistical regularities, which can be reproduced using agent
based models. The fat tails of actor mentions and network degree
distributions indicate dominant roles of the influential actors
and groups, which over time, form a part of a giant connected
component. Targeted removal of actors may help preventing
unruly events of conflicts. Inspired by the empirical findings, we
also propose a model for interacting actors that can reproduce
the most important features of our datasets.

Index Terms—social networks, conflicts, data analysis, model-
ing and simulations

I. INTRODUCTION

The quantitative analyses of massive data related to human
social conditions have gained much attention in the recent
years, due to the important insights gained from multidisci-
plinary approaches. Merging complex network analysis [1]–[3]
with traditional approaches in social sciences, as well as addi-
tion of tools and paradigms from several disciplines [4]. Dig-
ital data has drawn researchers collaborated across disciplines
to scientifically understand complex social phenomena [5], [6]
in the recent years, not known previously to the scale of detail
as in the present.

Social behavior, social conditions, events and organizations
have contributed to shaping the history of human civilization,
in a constructive way by building societies and shaping
cultures, and sometimes destructive as well – giving rise
to conflicts and wars, leading to restructuring countries or
nations. Conflicts take place across the world due to a variety
of reasons, ranging from socio-economic disparity to political
power competitions. As of today, ethnic wars continue to be
the most common form of armed conflicts across the globe, but
the forces at play that lead a society to ethnic conflicts are not
yet well understood. There seems to be a connection between

democratization and the occurrence of ethnic conflict. While
stable democracies rarely go to war with other democracies,
countries that are socio-politically unstable report frequent
conflicts between groups with opposing interests [7]. Ethnic
conflicts can escalate to human rights violations [8]. Hence,
the spatio-temporal studies of conflict formations and the
statistical studies of the associated variables are important.

Temporal data for human to human communications and
physical contacts/proximity has been studied extensively (see
e.g., Holme and Saramäki [9]). We have studied the scale
and topology of conflicts, using data from publicly accessible
databases, which keep account of events from news available
in media. We particularly focus on conflicts in general, as well
as armed conflicts from two separate databases. The availabil-
ity of high precision data along with precise spatio-temporal
information makes it possible to look for correlations between
events, involved actors (individuals, groups, organizations or
states) and the geographical pattern of spreading of conflicts,
among many other things. Although there have been studies on
speculation of ethnic conflicts using census data for segregated
population [10], a comprehensive and comparative study of
the involved actors in conflicts has been lacking. We present
an analysis of the activity of the actors, frequently engaging
actor pairs, and the network of actors in general, and provide
insights into the static and dynamical aspects of the actor
networks in different scenarios of conflicts. The results also
guided us to propose a simple model for interacting actors,
that can reproduce the main features as reported in our data
analyses.

II. DATA DESCRIPTION

The Integrated Crisis Early Warning System (ICEWS) Data-
verse [11] contains detailed information about various news
events happening around the world. By filtering out the related
subcategories – protest, assault, fight and violence, using
suitable queries, similar to the GDELT Event Database [12],
we extracted data related to conflicts. Each event data contains
information about the pair of actors involved, a unique time
stamp, names of individuals, organizations or groups, the loca-
tion information of the event, as well as latitude, longitude data
of actors and the event. The registered news and hence the data
serves as a proxy for the actual event and its intensity (in terms
of number of reports). We analyzed data for 1, 048, 575 eventsIEEE/ACM ASONAM 2018, August 28-31, 2018, Barcelona, Spain

978-1-5386-6051-5/18/$31.00 © 2018 IEEE



in the period 1995-2015. Although this database presents each
event data with a source actor and a target actor, we ignore
the directionality of the information in our analysis. We also
analyzed data from the Armed Conflict Location & Event Data
Project (ACLED) [13] for Africa during 1997-2016, reporting
a total of 105, 459 events. Each event entry in the latter data set
contains information about the number of fatalities, because
of the nature of the database (armed conflicts).

III. RESULTS

A. The network picture

For both datasets, we construct the aggregate networks over
the entire time periods (1995-2015 for ICEWS and 1997-2016
for ACLED). Each actor is visualized as a node and an event
is visualized as a link between the actors involved.

Over a period of time T , we construct the network of
‘connected’ actors in the following way: any pair of actors
A1 and A2 mentioned together in an event E1 reported at
time t ∈ [t0 : t0+T ] are ‘connected’ by a link of unit weight,
t0 being the beginning of an interval of time span T . If another
event E2 within the same time window involves actors A2 and
A3, then A3 is connected to A2 with a link of unit weight. Thus
A1 and A3 are both connected to A2. Aggregating all such
events over the time window T , connected components are
formed. The link weights w increase if the same pair of actors
linking them repeat in multiple events (actor pair mentions).
These connected components form a complex network of
nodes (actors) and links (actor pair mentions). The number of
distinct co-actors is hence the ‘degree’ k and the total number
of actor mentions is the node weight m. A particular actor
may be co-mentioned with many other actors and hence have a
larger ‘degree’ k, defined as the number of distinct co-actors it
has. A network aggregated over a time period can have several
disconnected components or ‘clusters’, the largest of which is
known as the giant component.

The ACLED actor network for the entire period consisted
of 3, 813 nodes, 105, 459 mentions and 8, 621 unique edges,
with the giant component of 3, 197 nodes and 104, 909 edges,
while the ICEWS network contains 231, 96 nodes, 1, 048, 575
mentions and 101, 596 unique edges, with the giant compo-
nent having 22, 874 nodes and 1, 048, 363 edges. The giant
component encompass the majority of actors, more than 83%
in case of ACLED while 98% in case of ICEWS data.

The Complementary Cumulative Distribution Function
(CCDF) for degree Q(k), node weight Q(m) and link weight
Q(w) show broad distributions, resemble either lognormal or
stretched exponential distributions (Figure 1), compared to
power laws reported earlier for GDELT data [8]. Nevertheless,
the above results quantitatively characterize the heterogeneity
in the activity of actors, while most actors are relatively less
active. The broad distributions for actor mentions indicate that
there are a significant few who constantly engage in conflicts,
that for actor pair mentions indicate similar characteristic for
pairs of actors. The broad degree distributions indicate that the
number of actors engaging with very large number of actors
are also quite significant.

B. Growth of degrees and nodes

We computed the growth pattern for top 10 actors ranked
according to mentions and degrees and found that the cumu-
lative growth rates for mentions and degrees are superlinear
functions of the respective arguments (see Figure 2). This
implies that the asymptotic growth rates are rather weakly
dependent on the arguments in turn. This suggests that in
the long run, the giant components will possibly engulf all of
the nodes, and what we are observing is possibly a transient,
intermediate state of the entire evolution.

C. Network resilience

We also demonstrate how the network breaks down under
attack, to investigate the possibility of preventing the spread
of unruly events [14]. We perform targeted removal of nodes
from the giant component by removing nodes according to
descending degree sequence. This leads to rapid destruction
or fragmentation of the network. The fraction of nodes G
present in the largest surviving cluster decrease very quickly
(Figure 3(a),(b)). We observe that this network can be de-
stroyed by targeted attack just by removing 11-15% of the
nodes. These numbers are drastically less compared to the
case when nodes are removed randomly (random failure) one
after another (Figure 3(c),(d)) and requires removing more
than 80% of the nodes to dismantle the network. This study
indicates that targeted intervention may help stop spreading of
conflicts by disconnecting the actors very rapidly.

D. Statistics of fatalities

The ACLED armed conflicts data contained information
about the number of fatalities for each event. Here, the
probability density function (PDF) of the number of fatalities
in a single event (Figure 4) has a broad distribution, and in fact,
most of distribution fits to a power law decay with exponent
close to 2, higher than the range 1.54−1.64 reported in earlier
extensive studies for the statistics of deaths in conflicts and
disasters [15]. We also note that the empirical data contains
higher frequency of rounded figures approximations – numbers
like 10, 20, 50, 100, 150, . . . and 1000 comes with very large
frequencies compared to other numbers in their proximity,
which is a consequence of rounding off numbers in social
data, when exact numbers are not available for reporting.

E. A model for interacting actors

A huge amount of literature deals with modeling complex
networks, taking cues from empirical observations. Most of
these models [1], [2] try to capture the basic essence of the
structure and dynamics of networks, while there exist the
specific ones which try to replicate each and every minute
aspect of a given dataset. Our empirical findings indicate a
strong growth component at the level of actor degree or node
weights (mentions) and we can model our systems as growing
networks, as has been previously well studied in complex
network literature [1], [2], [16]. We exploit the basic rich gets
richer phenomena in our microscopic model, since it is logical
to assume that actors who are already active and involved in
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Fig. 1. Statistics for aggregate networks: cumulative probability (CCDF) for (a) Q(k) that an actor is connected to k others or more; (b) Q(m) that an actor
is mentioned m times or more; (c) Q(w) that an actor pair is mentioned w times or more. The data is shown for ACLED and ICEWS datasets.
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Fig. 2. Cumulative growth rates π(m) and for mentions m for ICEWS and
ACLED datasets. The curves asymptotically fit to π(m) ∼ ma with a > 1.
The data is shown for the top 10 actors ranked according to degrees and
mentions. Similar results were obtained for degrees.
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Fig. 3. The structure of the network under attack: The plots show the
behavior of the giant component G (fraction of nodes in the largest connected
component) and the average number of nodes in the clusters other than the
giant component 〈c〉, with increasing fraction of removed nodes, for (a)
ICEWS and (b) ACLED. The structure of the network under random failure:
for (c) ICEWS and (d) ACLED networks.

events with others are likely to attract more events with the
same or other actors.

We start with N (even) nodes (actors), who are initially
not connected to each other. A connecting link of unit link
weight (m = 1) corresponds to an interaction event. To ensure
that the dynamics do not leave any single actor alone, we
assume initially they are pairwise connected. This is achieved
by constructing N/2 pairs of connected actors. This is done
to keep it consistent with the fact that our given empirical
dataset comes in the forms of events that involve a pair of
actors, which, in the network structure cannot leave an isolated
node. Thus, to begin with, each actor has a degree ki = 1
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Fig. 4. Probability density function (PDF) of the number of fatalities reported
in a single event of armed conflict, computed from the ACLED dataset for
Africa (1997-2006).

and node weight/mention mi = 1, with N/2 pairs having co-
mentions/link weights wij = 1, while others zero. Then comes
the growing phase of the network, when, at each time step, a
pair of nodes {i, j} is selected with probability f proportional
to (i) kb or (ii) mentions mb, and the variables associated
with them are updated. i.e., mi → mi +1 and mj → mj +1,
ki → ki + 1 and kj → kj + 1 if {i, j} were not connected
previously, else ki, kj remain unchanged. Link weight also
increases by 1, i.e., wij → wij + 1. Distributions for degree
P (k), mentions P (m) and co-mentions/link weights P (w)
were measured after T iterations. In our numerical simulations,
we kept T = 10N and system sizes N varied between
103 − 104, keeping realistic with our empirical data. The
results shown in the plots are produced for 102 configuration
averages. For f = f(m), power law distributions in the
measured quantities m, k and w are observed roughly in
the range 1.3 ≤ b < 2, while for f = f(k), power law
distributions are observed for 1.6 < b < 2. Below the
lower limit of the range, we find non-power law behavior of
the probability distributions, resembling either lognormal, and
becoming exponential dominated for even smaller values of
b. Beyond b = 2, the power law distribution breaks down
into two distinct parts – smaller clusters and a very large
cluster (akin a condensate). In Figure 5, we show the typical



cases where the connection probabilities are assumed to be
dependent on node weights (mentions) as mb, with b = 1.5.
Thus, a minimal model can reproduce the basic features of
the network that was constructed by analyzing the event news
data involving several actors.
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Fig. 5. Probability density functions (PDF) of degree k, node weights
(mentions) m and link weights (co-mentions) w for a model networks
generated for the case b = 1.5 with N = 104 nodes. (a) For the case of
the rate of interaction proportional to node weights m, f(m) ∝ mb, the
distributions have power law tails with exponents close to 2. (b) For the case
of the rate of interaction proportional to node degree k, f(k) ∝ kb, the
distributions have non-power law tails, resembling stretched exponential or
lognormal functions.

IV. CONCLUSIONS AND DISCUSSIONS

Reports in news media serve as fair proxy for the importance
and intensity of events, from the number of reports and
lingering span of time through which the reports follow. Our
study uses a time-bound sample of the same and focuses on
events that pointed at various events of conflicts, including
armed conflicts. The data of events aggregated over time
enables us to construct a network of actors, and even finding
disconnected groups. The frequencies of mentions of actors
(node weight m) and co-mentions (link weight w) with others,
as well as involvement with distinct actors (degree k) are
good proxies for their importance and influence as well as
involvement with other actors. Our study reveals that very
large clusters of frequently engaging actors exist while there
are also isolated clusters. Identification of influential groups of
actors, in terms of their intensities of activities, is important for
the purpose of possible intervention by concerned authorities
(e.g., government agencies) that may prevent the spread of
such unruly events. The probability distributions of degree,
node weight and link weights have broad tails for the largest
values, indicative of an underlying self-organizing principle
behind the events. It would be interesting to address the soci-
ological explanations, implications and policies in the future,
although that is a challenging issue. The growth properties
of the most influential actor nodes indicate that in the long
run, very small fraction of disconnected clusters will be left,
while most will get merged to a giant connected component.
The data are not only found to be strikingly similar in terms of
static and dynamic properties of the network, but also in terms
of network stability against failure or targeted attack. This
detailed study of network structure, dynamics, function and
resilience of the event news data complex network may help
policy makers, to point out influential actors and preventing
the spread of conflicts. Similar analyses using data from other

forms of online social (e.g., Twitter) can also be useful.
In the spirit of minimal toy models to reproduce the basic
characteristics observed from empirical data, we have also
put forward a simple growing network model for interacting
actors, where the probability of any actor to get involved is
assumed to be proportional to the number of actors it has
already interacted with. The numerical simulations reproduce
well the various broad distributions found for the probability
distributions of degree, node weights and link weights – both
power law tails (as reported in GDELT data [8]) and lognormal
or stretched exponential characteristics (as reported in this
work for ACLED and ICEWS data).

While our study uses standard, well established statistical
methods as well as tools of complex networks, the novelty of
this work lies in the visualization of the given data in terms
of networks and bringing out some important aspects of a
network of actors, possibly in conflict. Our multidisciplinary
approach to the problem also renders enough insight so as
to enable us propose a simple toy mode that can reproduce
the basic features of the network. Our work lays a foundation
for possible future studies that can bring out details of the
mechanisms of when and how the actors get involved, and
this might have important social, economic and political
implications.
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[9] P. Holme and J. Saramäki, Eds., Temporal networks. Springer, 2013.
[10] M. Lim, R. Metzler, and Y. Bar-Yam, “Global pattern formation and

ethnic/cultural violence,” Science, vol. 317, no. 5844, pp. 1540–1544,
2007.

[11] “Integrated Crisis Early Warning System (ICEWS) Dataverse, retrieved
October, 2017,” https://dataverse.harvard.edu/dataverse/icews/.

[12] “The GDELT Project, retrieved October, 2016,” www.gdeltproject.org/.
[13] ACLED, Armed Conflict Location & Event Data Project, 2017.
[14] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of

complex networks,” Nature, vol. 406, no. 6794, pp. 378–382, 2000.
[15] A. Chatterjee and B. K. Chakrabarti, “Fat tailed distributions for deaths

in conflicts and disasters,” Rep. Adv. Phys. Sc., vol. 1, p. 1740007, 2017.
[16] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of networks,” Adv.

Phys., vol. 51, no. 4, pp. 1079–1187, 2002.


